Operasihimpunan 1. Gabungan dua himpunan Operasi himpunan pertama yang akan kita bahas disini adalah gabungan. Gabungan dari dua himpunan A dan B adalah himpunan yang terdiri dari semua anggota himpunan A dan himpunan B, dimana anggota yang sama hanya ditulis satu kali. A gabungan B ditulis A ∪ B = {x|x ϵ A atau x ϵ B} Contoh: A = {1, 2, 3, 4, 5} KAIDAHKAIDAH MATEMARIKA DALAM PENGOPERASIAN HIMPUNAN Kaidah Idempoten • ∪ = • ∩ = Kaidah Asosiatif •( ∪ )∪ = ∪( ∪ ) •( ∩ )∩ = ∩( ∩ ) Kaidah Komutatif • ∪ = ∪ • ∩ = ∩ Kaidah Distributif • ∪( ∩ )= ∪ ∩( ∪ ) Kaidah Identitas CaraMenyatakan Himpunan Operasi Himpunan 1. Irisan Himpunan 2. Gabungan Himpunan 3. Selisih 4. Komplemen Himpunan 5. Beda setangkup (SYMMETRIC DIFFERENCE) Contoh Soal dari Operasi Himpunan Diagram Venn Macam Macam Himpunan Himpunan Penyelesaian Sistem Persamaan Linear Dua Variabel (SPLDV) Metode Grafik Metode Subtitusi Metode Eliminasi PenerapanKonsep Himpunan dalam Pemecahan Masalah. ekonomi dan bisnis, #aplikasi himpunan dan diagram venn, #contoh bukan himpunan dalam kehidupan sehari-hari, #contoh himpunan matematika dalam kehidupan sehari-hari, Pos berikutnya Mengenal Lebih Jauh Operasi Bilangan Bulat. Pos-pos Terbaru. Soal Matriks SMK Part 8; Soal Matriks SMK Part 7; 5 Kaidah-kaidah Matematika dalam Pengoperasian Himpunan • Hukum idempoten: A ∩A = A A ∪A = A • Hukum komutatif: A ∪B = B ∪A A ∩B = B ∩A • Hukum asosiatif: A ∪(B ∪C) = (A ∪B) ∪C A ∩(B ∩C) = (A ∩B) ∩C • Hukum distributif: A ∩(B ∪C) = (A ∩B) ∪(A ∩C) A ∪(B ∩C) = (A ∪B) ∩(A ∪C) Notasi: Ā adalah himpunan yang beranggotakan obyek-obyek yang tidak dimiliki oleh A. Atau Ā adalah selisih antara himpunan universal U dengan A. Ā = { x; x Є U tetapi x Є A } = U - A Kaidah Matematika dalam Pengoperasian Himpunan 1). Kaidah Idempoten A U A = A A Π A = A 2). Kaidah Asosiatif . 0% found this document useful 0 votes1 views4 pagesOriginal Titlekaidah-matematika-dalam-operasi-himpunan[1]Copyright© © All Rights ReservedShare this documentDid you find this document useful?0% found this document useful 0 votes1 views4 pagesKaidah Matematika Dalam Operasi HimpunanOriginal Titlekaidah-matematika-dalam-operasi-himpunan[1]Jump to Page You are on page 1of 4 Gnbn ? Viswlyl Gpb. ? 04>>644;;Trlji. ? Tkr`ngcng Vynrinm Vkbkstkr 6BC. ? Bntkbnticn isgis N. TkghkrtingBntkbnticn isgis njnanm bkbpkanonri tkgtngh pkgkrnpng iabu bntkbnticn jnanb pkgykaksning `kr`nhi pkrbnsnanmng `isgis. Ckbnbpung ngnaisis jng `krpicir alhis jnanb bntkbnticn jnpnt bkb`ngtu bkbkfnmcng pkrslnang `isgis.  Tkgtighgyn Tkghktnmung Eughsi Bntkbnticn ugtuc KclglbiCkonjing-ckonjing kclglbi snaigh `krmu`ughng jng snaigh bkbpkghnrumi skpkrti ?  Mu`ughng pkgjnpntng jkghng pkghkaunrng ugtuc clgsubsi  Mu`ughng mnrhn jkghng pkrbigtnng `nrngh  Mu`ughng inyn Trlblsi jkghng Mnsia Tkgounang  Mu`ughng Igvkstnsi jkghng Tkgjnpntng gnsilgnaJkghng jkbicing citn jnpnt bkancucng ?  Tkru`nmng ‖ pkru`nmng yngh tkronji  Tkrnbnang ntnu Tkrcirnng  Bkghucur Tkghnrum  k`krnpn Flgtlm Tkghhugnng BntkbnticnTkghhugnng Jnanb Vtntistic Kclglbi ? - Bkbnmnbi rubus-rubus stntistic - Bkbnmnbi tklri pkghuoing mipltksis - Bkbnmnbi clgskp tklri mnrnpng - Bkbnmnbi ngnaisn rkhrksiTkghhugnng Aigknr Trlhrnbbigh ? - Bncsibub bigibub - Bntrics jng jktkrbigng > MIBT[GNG 0.>. Tkghkrting jng Tkgynoing MibpugngMIBT[GNG njnanm Vuntu jnetnr jnri skcubpuang l`ykc yngh bkbpugyni firi-firi tkrtkgtu. L`ykc yngh njn jnanb mibpugng jnpnt `krupn ? ianghng, Gnbnlrngh, Murue, Gnbn cltn, js`. L`ykc yngh njn jnanb mibpugng jisk`utKakbkg ntnu [gsur ntnu `insngyn jituais jnanb murue `ksnr, skpkrti? N, , F, J, ], Y….,Vkjnghcng nghhltn mibpugng jituais jnanb murue ckfia, skpkrti ? n, `, f, j, x,y….Fnrn bkguais mibpugng ? >.Jkghng fnrn bkgjnetnr nghhltn mibpugnggynFlgtlm ? N 2 { n, `, f, j } nrtigyn mibpugng N bkbpugyni nghhltnynitu n, `, f, jng fnrn bkgkgtucng suntu nturng pkrgyntnng Flgtlm ? Vuntu mibpugng yngh `krnghhltncng x skjkbicing rupnskmighhn x njnanm `ianghng hngoia >, 6, ;, 8, ………jst, jituais jkghng ? 2 { x x `ianghng hngoia }T 2 { x x bnmnsiswn pkgkribn `knsiswn }Vuntu l`ykc yngh bkrupncng nghhltn mibpugng jituais jkghngx Ç . Vuntu l`ykc yngh `ucng bkrupncng nghhltn mibpugng jituaisjkghng x Ì Mibpugng N jicntncng snbn jkghng mibpugng , oicn ckjungynbkbpugyni nghhltn yngh snbn, bncn ncng jituais N 2 Jnpnt tkronji `nmwn suntu mibpugng tijnc bkbpugyni nghhltnsnbn skcnai. Mibpugng tkrsk`ut jignbncng mibpugng clslgh ntnumibpugng gla, ji`kri anb`ngh 2 Å ntnu 2 { }. Mibpugng clslghbkrupncng mibpugng `nhing jnri sktinp mibpugng. Flgtlm ? C 2 { 6 }mibpugng igi mngyn bkbiaici sntu nghhltn ynitu nghcn 6. Mibpugng `nhing yngh jibiaici lakm mibpugng C njnanm skbun mibpugng yngh `krnghhltncng nghcn 6 jng skbun mibpugng clslgh. 0 Bisnacng mibpugng ^ 2 { n, ` }, bncn mibpugng `nhinggynnjnanm ? N 2 { n }, 2 { ` }, F 2 { n, ` }, jng J 2 { } onji oubanmmibpugng `nhing yngh jibiaici lakm mibpugng ^ 2 { n, ` } njn mibpugng. [gtuc bkghmitugh oubanm mibpugng `nhing yngh jibiaici lakmsuntu mibpugng yngh bkbiaici g nghhltn jnpnt jirubuscng ? 0 g Lpkrnsi MibpugngAnb`ngh-anb`ngh jnanb Zklri Mibpugng jng nrtigyn GlAnb`nghNrtiFlgtlm Tkghhugnng>. \ N [ ÝNghhltnkakbkgtmibpugng `nhingsu`skthn`ughngugilgirisngigtkrskftilgskaisim `ucng Nclbpakbkgmibpugng ugivkrsnamibpugng clslgh x Ç N ? l`ykc x njnanm nghhltn jnri mibpugng N N Á ? N njnanm mibpugng `nhing jnri N Í ? hn`ughng ngtnrn N jng N È ? irisng ngtnrn N jng N - ? skaisim ngtnrn mibp N jicurnghi mibp N 2 `ianghng plsitie N 2 `ianghng gkhntie Vkaurum n`onj jnri n snbpni zVkaurum pkgjujuc ji juginVuntu fnrn skjkrmngn ugtuc bkghhnb`nrcng mu`ughng ngtnr mibpugng njnanm bkghhugncng Jinhrnb Ukgg ‖ Kuakr Cnijnm Bntkbnticn jnanb Lpkrnsi Mibpugng 6 Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime. Jenis Jenis Operasi Pada Himpunan Matematika A. Jenis-jenis Operasi Pada Himpunan Matematika 1. Irisan ∩ Irisan himpunan A dan B adalah himpunan yang anggotanya menjadi anggota A dan menjadi anggota B. Misalkan seperti contoh ini A ∩ B = { x Ι x ∈ A dan x ∈ B} Contoh gambar Diagram venn untuk operasi himpunan irisan seperti dibawah ini Serta contoh penulisan untuk operasi himpunan irisan serperti dibawah ini A = {1,2} B = {1,2,3, maka irisannya adalah A ∩ B = {1,2}. Jika kita melihat pada gambar diagram venn nya, maka {1,2} terletak pada arsiran berwarna merah. 2. Gabungan ∪ Gabungan himpunan A dan B adalah himpunan yang anggotanya merupakan anggota A atau anggota B. Misalkan seperti contoh ini A ∪ B = { x Ι x ∈ A atau x ∈ B}. Contoh gambar Diagram venn untuk operasi himpunan gabungan seperti dibawah ini Serta contoh penulisan untuk operasi himpunan gabungan serperti dibawah ini A = {1,2} B = {1,2,3, maka gabungannya adalah A ∪ B = {1,2,3}. Jika kita melihat pada gambar diagram venn nya, maka {1,2,3} terletak pada seluruh lingkaran yang terarsir. 3. Komplemen c Komplemen dari A adalah himpunan yang anggotanya bukan anggota dari himpunan A itu sendiri. Komplemen disimbolkan dengan Ac. Misalkan seperti contoh ini Ac= { x Ι x ∉ A }. Contoh gambar Diagram venn untuk operasi himpunan komplemen seperti dibawah ini Serta contoh penulisan untuk operasi himpunan komplemen serperti dibawah ini S = {1,2,3,4,5,6,7,8,9,10} A = {1,2} Ac = {3,4,5,6,7,8,9,10} Jika kita melihat pada gambar diagram venn nya, maka {3,4,5,6,7,8,9,10} terletak pada luar lingkaran. 4. Selisih − Selisih himpunan A dan B adalah himpunan yang anggotanya semua anggota dari A, namun bukan anggota dari B. Misalkan seperti contoh ini A − B = { x Ι x ∈ A, x ∉ B}. Contoh gambar Diagram venn untuk operasi himpunan selisih seperti dibawah ini Serta contoh penulisan untuk operasi himpunan selisih serperti dibawah ini A = {1,2,3} B = {1,2,5, maka gabungannya adalah A − B = {3}, begitu juga sebaliknya jika B − A = {5}. Jika kita melihat pada gambar diagram venn nya, maka itu adalah gambar dari A − B = {3} terletak lingkaran A yang terarsir. 5. Jumlah + Jumlah himpunan A dan B adalah himpunan yang anggotanya A dan B, kecuali irisan dari A dan B. Misalkan seperti contoh ini A + B = { x Ι x ∈ A dan A ∈ B, x ∉ A ∩ B}. Contoh gambar Diagram venn untuk operasi himpunan jumlah seperti dibawah ini Serta contoh penulisan untuk operasi himpunan jumlah serperti dibawah ini A = {1,2,3} B = {1,2,5, maka gabungannya adalah A + B = {3,5}. Jika kita melihat pada gambar diagram venn nya, maka itu adalah gambar dari A + B = {3, 5} terletak lingkaran A dan lingkaran B yang terarsir. Sekian pembahasan kita kali ini tentang Operasi apda Himpunan yang dimulai dari Operasi Irisan, Gabungan, Komplemen, Selisih dan juga Jumlah. Sebelum kita akhiri, memberikan contoh soal dibawah ini untuk memperdalam pemahaman kita tentang materi kali ini. Mari kita perhatikan jangan lupa dikerjakan yaa teman-teman. Contoh Soal Jenis Jenis Operasi Pada Himpunan Matematika S = { x Ι 1 < x < 15, x ∈ N, P = {faktor dari 10}, Q = {tiga bilangan prima pertama}, tentukan a P ∪ Q b P ∩ Q c P − Q d P + Q e Pc f Qc Selamat mengerjakan!!! Home » » TUGAS PPRESENTASI 2 Operasi himpunan dan Kaidah-kaidah matematika dalam pengoperasian TUGAS MATEMATIKA PROGRAM STUDI AGROTEKNOLOGI UNIVERSITAS TRIBHUWANA TUNGGADEWI MALANG DISUSUN OLEH 1. 2. 3. 4. 5. TAHUN AJARAN 2014/2015 KATA PENGANTAR Sebagai pedoman bahwa terselesaikannya makalah ini, saya mengucap syukur atas karunia terhadap Tuhan yang maha Esa, atas karunia dan Rahmatnya saya dapat menyelesaikan maakalah inni dengan tepat waktu deengan sesuai yang di harapkan. Makalah ini di susun berdasarkan ketentuan yang telah dirancangg sesuai syarat standar pendidikan. Saya juga mengucapkan terima kasih atas dosen yang memberiikan tugas ini sebagai didikan yang nantinya dapat mmembemtuk karakter saya. Atas kekurangan kata-kata, penyampaian maupun penyusunan makalah ini saya mohon maaf . Untuk itu saya mengharapkan kritik dan saran agar makalah ini dapat sempurna. Atas perhatiannya saya mengucapkan terima kasih. Malang,22 september 2014 penulis Pendahuluan Matematika merupakan ilmu pengetahuan yang terdapat dalam kehidupan sehari hari. Salah satu ilmu yang dapat di pelajari dari matematika adalah himpunan. Himpunan merupakan ilmu matematika yang sangat penting dalam kehidupan sehari hari. Himpunan sangat erat hubungannya dalam setiap aspek kehidupan pentingnya mempelajari materi ini, agar kita mengerti masalah kehidupan serta penyelesaiannya dalam konsep matematika. Dalam makalah ini kita akan membahas dan mempelajari himpunan serta operasi-operasinya . Dalam pembelajaran ini kita akan mengetahui tentang apa itu himpunan dan operasi penyelesaiannya. Setelah mempelajari materi ini, kita di harapkan dapat mengerti dan mempuyai wawasan tentang apa yang telah kita pelajari dalam materi ini. Semoga makalah ini memberikan manfaat positif bagi kita semua, sehingga tujuan negara dapat tercapai. Operasi Himpunan Jenis Operasi Hukum dan sifat-sifat Operasi 1 Gabunan Union A U B = B U A disebut sifat komutatif gabungan A U B U C = A U B U C disebut sifat asosiatif gabungan A U Ø = A A U U = U A U A = A A U A’ = U Disebut sifat komplemen gabungan 2 Irisan intersection A W B = B W A disebut sifat komutatif irisan A W A = A A W = Ø A W U = A A W A’ = Ø disebut sifat komplemen irisan A W B W C = A W B W A disebut sifat asosiatif irisan 2 Distributif A U B W C = A U B W A U C; disebut sifat distributif gabungan terhadap irisan. A W B U C = A W B U A W C; disebut sifat distributif irisan terhadap gabungan. 3 Selisih A – A = Ø A – Ø = A A – B = A W B’ A – BUC = A – BW A – C A – B W C = A – BUA – C 4 Komplemen A’’ = A U’ = Ø Ø’ = U AUA’ = U AWA’ = U AWA’= Ø 5 Banyaknya Anggota nA + nB K nAUB nAUB = nA + nB – nAWB nAUBUC = nA + nB + nC – nAWB – nBWC – nCWA + nAWBWC nA + nB = nAUB + nAWB nA + nB + nC =nAUBUC + nAWB + nAWC + nBWC – nAWBWC Kaidah Matematika dalam Operasi Himpunan 1. Kaidah Idempoten A È A = A A Ç A = A 2. Kaidah Asosiatif A È B È C = A È B È C A Ç B Ç C = A Ç B Ç C 3. Kaidah Komutatif A È B = B È A A Ç B = B Ç A 4. Kaidah Distributif A È B Ç C = A È B Ç A È C A Ç B È C = A Ç B È A Ç C ______ _ _ ______ _ _ 5. Kaidah De Morgan A È B = A Ç B A Ç B = A È B 6. Kaidah Identitas A È Ø = A A Ç Ø = Ø A È U = U A Ç U = A _ _ 7. Kaidah Kelengkapan A È A = U A Ç A = Ø __ _ _ A = A U = Ø dan Ø = U

kaidah matematika dalam operasi himpunan